【Python爬虫7】验证码处理

2/22/2017来源:ASP.NET技巧人气:1817

获得验证码图片 光学字符识别验证码 用API处理复杂验证码 1 9kw打码平台 11 提交验证码 12 请求已提交验证码结果 12与注册功能集成

验证码(CAPTCHA)全称为全自动区分计算机和人类的公开图灵测试(Completely Automated Public Turing test to tell Computersand Humans Apart)。从其全称可以看出,验证码用于测试用户是真实的人类还是计算机机器人。

1.获得验证码图片

每次加载注册网页都会显示不同的验证验图像,为了了解表单需要哪些参数,我们可以复用上一章编写的parse_form()函数。

>>> import cookielib,urllib2,pPRint >>> import form >>> REGISTER_URL = 'http://127.0.0.1:8000/places/default/user/register' >>> cj=cookielib.CookieJar() >>> opener=urllib2.build_opener(urllib2.HTTPCookieProcessor(cj)) >>> html=opener.open(REGISTER_URL).read() >>> form=form.parse_form(html) >>> pprint.pprint(form) {'_formkey': 'a67cbc84-f291-4ecd-9c2c-93937faca2e2', '_formname': 'register', '_next': '/places/default/index', 'email': '', 'first_name': '', 'last_name': '', 'passWord': '', 'password_two': '', 'recaptcha_response_field': None} >>>

上面recaptcha_response_field是存储验证码的值,其值可以用Pillow从验证码图像获取出来。先安装pip install Pillow,其它安装Pillow的方法可以参考http://pillow.readthedocs.org/installation.html 。Pillow提价了一个便捷的Image类,其中包含了很多用于处理验证码图像的高级方法。下面的函数使用注册页的HTML作为输入参数,返回包含验证码图像的Image对象。

>>> import lxml.html >>> from io import BytesIO >>> from PIL import Image >>> tree=lxml.html.fromstring(html) >>> print tree <Element html at 0x7f8b006ba890> >>> img_data_all=tree.CSSselect('div#recaptcha img')[0].get('src') >>> print img_data_all  ... rkJggg== >>> img_data=img_data_all.partition(',')[2] >>> print img_data iVBORw0KGgoAAAANSUhEUgAAAQAAAABgCAIAAAB9kzvfAACAtklEQVR4nO29Z5gcZ5ku3F2dc865 ... rkJggg== >>> >>> binary_img_data=img_data.decode('base64') >>> file_like=BytesIO(binary_img_data) >>> print file_like <_io.BytesIO object at 0x7f8aff6736b0> >>> img=Image.open(file_like) >>> print img <PIL.PngImagePlugin.PngImageFile image mode=RGB size=256x96 at 0x7F8AFF5FAC90> >>>

在本例中,这是一张进行了Base64编码的PNG图像,这种格式会使用ASCII编码表示二进制数据。我们可以通过在第一个逗号处分割的方法移除该前缀。然后,使用Base64解码图像数据,回到最初的二进制格式。要想加载图像,PIL需要一个类似文件的接口,所以在传给Image类之前,我们以使用了BytesIO对这个二进制数据进行了封装。 完整代码:

# -*- coding: utf-8 -*-form.py import urllib import urllib2 import cookielib from io import BytesIO import lxml.html from PIL import Image REGISTER_URL = 'http://127.0.0.1:8000/places/default/user/register' #REGISTER_URL = 'http://example.webscraping.com/user/register' def extract_image(html): tree = lxml.html.fromstring(html) img_data = tree.cssselect('div#recaptcha img')[0].get('src') # remove data:image/png;base64, header img_data = img_data.partition(',')[-1] #open('test_.png', 'wb').write(data.decode('base64')) binary_img_data = img_data.decode('base64') file_like = BytesIO(binary_img_data) img = Image.open(file_like) #img.save('test.png') return img def parse_form(html): """extract all input properties from the form """ tree = lxml.html.fromstring(html) data = {} for e in tree.cssselect('form input'): if e.get('name'): data[e.get('name')] = e.get('value') return data def register(first_name, last_name, email, password, captcha_fn): cj = cookielib.CookieJar() opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj)) html = opener.open(REGISTER_URL).read() form = parse_form(html) form['first_name'] = first_name form['last_name'] = last_name form['email'] = email form['password'] = form['password_two'] = password img = extract_image(html)# captcha = captcha_fn(img)# form['recaptcha_response_field'] = captcha encoded_data = urllib.urlencode(form) request = urllib2.Request(REGISTER_URL, encoded_data) response = opener.open(request) success = '/user/register' not in response.geturl() #success = '/places/default/user/register' not in response.geturl() return success

2.光学字符识别验证码

光学字符识别(Optical Character Recognition, OCR)用于图像中抽取文本。本节中,我们将使用开源的Tesseract OCR引擎,该引擎最初由惠普公司开发的,目前由Google主导。Tesseract的安装说明可以从http://code.google.com/p/tesseract-ocr/wiki/ReadMe 获取。然后可以使用pip安装其Python封装版本pytesseractpip install pytesseract。 下面我们用光学字符识别图像验证码:

>>> import pytesseract >>> import form >>> img=form.extract_image(html) >>> pytesseract.image_to_string(img) '' >>>

如果直接把验证码原始图像传给pytesseract,一般不能解析出来。这是因为Tesseract是抽取更加典型的文本,比如背景统一的书页。下面我们进行去除背景噪音,只保留文本部分。验证码文本一般都是黑色的,背景则会更加明亮,所以我们可以通过检查是否为黑色将文本分离出来,该处理过程又被称为阈值化

>>> >>> img.save('2captcha_1original.png') >>> gray=img.convert('L') >>> gray.save('2captcha_2gray.png') >>> bw=gray.point(lambda x:0 if x<1 else 255,'1') >>> bw.save('2captcha_3thresholded.png') >>>

这里只有阈值小于1的像素(全黑)都会保留下来,分别得到三张图像:原始验证码图像、转换后的灰度图和阈值化处理后的黑白图像。最后我们将阈值化处理后黑白图像再进行Tesseract处理,验证码中的文字已经被成功抽取出来了。

>>> pytesseract.image_to_string(bw) 'language' >>> >>> import Image,pytesseract >>> img=Image.open('2captcha_3thresholded.png') >>> pytesseract.image_to_string(img) 'language' >>>

我们通过示例样本测试,100张验证码能正确识别出90张。

>>> import ocr >>> ocr.test_samples() Accuracy: 90/100 >>>

下面是注册账号完整代码:

# -*- coding: utf-8 -*- import csv import string from PIL import Image import pytesseract from form import register def main(): print register('Wu1', 'Being1', 'Wu_Being001@QQ.com', 'example', ocr) def ocr(img): # threshold the image to ignore background and keep text gray = img.convert('L') #gray.save('captcha_greyscale.png') bw = gray.point(lambda x: 0 if x < 1 else 255, '1') #bw.save('captcha_threshold.png') word = pytesseract.image_to_string(bw) ascii_word = ''.join(c for c in word if c in string.letters).lower() return ascii_word if __name__ == '__main__': main()

我们可以进一步改善OCR性能: - 实验不同阈值 - 腐蚀阈值文本,突出字符形状 - 调整图像大小 - 根据验证码字体训练ORC工具 - 限制结果为字典单词

3.用API处理复杂验证码

为了处理更加复杂的图像,我们将使用验证处理服务,也叫打码平台

3.1 9kw打码平台

先到9kw打码平台注册一个个人账号https://www.9kw.eu/register.html 登录后,定位到https://www.9kw.eu/usercaptcha.html 手工处理其他用户验证码获得积分 创建API key https://www.9kw.eu/index.cgi?action=userapinew&source=api

3.1.1 提交验证码

提交验证码参数: - URL: https://www.9kw.eu/index.cgi(POST) - action:POST必须设为:’usercaptchaupload’ - apikey:个人的API key - file-upload-01:需要处理的图像(文件、url 或字符串) - base64:如果输入的是Base64编码,则设为“1” - maxtimeout:等待处理的最长时间(60~3999) - selfsolve:如果自己处理该验证码,则设为“1”

返回值: - 该验证码的ID

API_URL: https://www.9kw.eu/index.cgi def send(self, img_data): """Send CAPTCHA for solving """ print 'Submitting CAPTCHA' data = { 'action': 'usercaptchaupload', 'apikey': self.api_key, 'file-upload-01': img_data.encode('base64'), 'base64': '1', 'selfsolve': '1', 'maxtimeout': str(self.timeout) } encoded_data = urllib.urlencode(data) request = urllib2.Request(API_URL, encoded_data) response = urllib2.urlopen(request) return response.read()

API文档地址https://www.9kw.eu/api.html#apisubmit-tab

3.1.2 请求已提交验证码结果

请求结果的参数: - URL: https://www.9kw.eu/index.cgi(GET) - action:GET必须设为:’usercaptchacorrectdata’ - apikey:个人的API key - id:要检查的验证码ID - info:若设为“1”,没有得到结果时返回“NO DATA”(默认返回空)

返回值: - 要处理的验证码文本或错误码

错误码: - 0001:API key不存在 - 0002:没有找到API key - 0003:没有找到激活的API key …… - 0031:账号被系统禁用24小时 - 0032:账号没有足够的权限 - 0033:需要升级插件

def get(self, captcha_id): """Get result of solved CAPTCHA """ data = { 'action': 'usercaptchacorrectdata', 'id': captcha_id, 'apikey': self.api_key, 'info': '1' } encoded_data = urllib.urlencode(data) response = urllib2.urlopen(self.url + '?' + encoded_data) return response.read()

3.1.2与注册功能集成

# -*- coding: utf-8 -*- import sys import re import urllib2 import urllib import time from io import BytesIO from PIL import Image from form import register def main(api_key, filename): captcha = CaptchaAPI(api_key) print register('wu101', 'being101', 'wu_being101@qq.com', 'password.com', captcha.solve) class CaptchaError(Exception): pass class CaptchaAPI: def __init__(self, api_key, timeout=60): self.api_key = api_key self.timeout = timeout self.url = 'https://www.9kw.eu/index.cgi' def solve(self, img): """Submit CAPTCHA and return result when ready """ img_buffer = BytesIO() img.save(img_buffer, format="PNG") img_data = img_buffer.getvalue() captcha_id = self.send(img_data) start_time = time.time() while time.time() < start_time + self.timeout: try: text = self.get(captcha_id) except CaptchaError: pass # CAPTCHA still not ready else: if text != 'NO DATA': if text == 'ERROR NO USER': raise CaptchaError('Error: no user available to solve CAPTCHA') else: print 'CAPTCHA solved!' return text print 'Waiting for CAPTCHA ...' raise CaptchaError('Error: API timeout') def send(self, img_data): """Send CAPTCHA for solving """ print 'Submitting CAPTCHA' data = { 'action': 'usercaptchaupload', 'apikey': self.api_key, 'file-upload-01': img_data.encode('base64'), 'base64': '1', 'selfsolve': '1', 'maxtimeout': str(self.timeout) } encoded_data = urllib.urlencode(data) request = urllib2.Request(self.url, encoded_data) response = urllib2.urlopen(request) result = response.read() self.check(result) return result def get(self, captcha_id): """Get result of solved CAPTCHA """ data = { 'action': 'usercaptchacorrectdata', 'id': captcha_id, 'apikey': self.api_key, 'info': '1' } encoded_data = urllib.urlencode(data) response = urllib2.urlopen(self.url + '?' + encoded_data) result = response.read() self.check(result) return result def check(self, result): """Check result of API and raise error if error code detected """ if re.match('00\d\d \w+', result): raise CaptchaError('API error: ' + result) if __name__ == '__main__': try: api_key = sys.argv[1] filename = sys.argv[2] except IndexError: print 'Usage: %s <API key> <Image filename>' % sys.argv[0] else: main(api_key, filename)

Wu_Being 博客声明:本人博客欢迎转载,请标明博客原文和原链接!谢谢! 【Python爬虫系列】《【Python爬虫7】验证码处理》http://blog.csdn.net/u014134180/article/details/55508229 Python爬虫系列的GitHub代码文件:https://github.com/1040003585/WebScrapingWithPython